Prolog |
|
xxv | |
PART ONE BASIC THEORY OF DERIVATIVES |
|
1 | (308) |
|
|
3 | (20) |
|
|
3 | (1) |
|
|
3 | (2) |
|
|
5 | (7) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (2) |
|
|
17 | (2) |
|
|
19 | (2) |
|
A first example of no arbitrage |
|
|
19 | (2) |
|
|
21 | (2) |
|
|
23 | (28) |
|
|
23 | (1) |
|
|
23 | (5) |
|
Definition of common terms |
|
|
28 | (1) |
|
|
29 | (5) |
|
Other representations of value |
|
|
29 | (5) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
The value of the option before expiry |
|
|
35 | (1) |
|
Factors affecting derivative prices |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (2) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (3) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (3) |
|
The Random Behavior of Assets |
|
|
51 | (14) |
|
|
51 | (1) |
|
Similarities between equities, currencies, commodities and indices |
|
|
51 | (1) |
|
|
52 | (3) |
|
|
55 | (4) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
The random walk on a spreadsheet |
|
|
60 | (1) |
|
|
61 | (1) |
|
The widely accepted model for equities, currencies, commodities and indices |
|
|
62 | (1) |
|
|
63 | (2) |
|
Elementary Stochastic Calculus |
|
|
65 | (16) |
|
|
65 | (1) |
|
|
65 | (2) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
Stochastic differential equations |
|
|
70 | (1) |
|
|
70 | (1) |
|
Functions of stochastic variables and Ito's lemma |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (5) |
|
Brownian motion with drift |
|
|
75 | (1) |
|
The lognormal random walk |
|
|
75 | (3) |
|
A mean-reverting random walk |
|
|
78 | (1) |
|
And another mean-reverting random walk |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (10) |
|
|
81 | (1) |
|
|
81 | (1) |
|
Elimination of risk: delta hedging |
|
|
82 | (1) |
|
|
83 | (1) |
|
The Black--Scholcs equation |
|
|
84 | (1) |
|
The Black--Scholes assumptions |
|
|
85 | (1) |
|
|
86 | (1) |
|
Options on dividend-paying equities |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
Some other ways of deriving the Black--Scholes equation |
|
|
88 | (1) |
|
|
82 | (6) |
|
|
88 | (1) |
|
|
88 | (1) |
|
|
89 | (2) |
|
Partial Differential Equations |
|
|
91 | (8) |
|
|
91 | (1) |
|
Putting the Black--Scholes equation into historical perspective |
|
|
91 | (1) |
|
The meaning of the terms in the Black--Scholes equation |
|
|
92 | (1) |
|
Boundary and initial/final conditions |
|
|
93 | (1) |
|
|
93 | (2) |
|
Transformation to constant coefficient diffusion equation |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
Other analytical techniques |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
The Black--scholes Formulae and the `Greeks' |
|
|
99 | (28) |
|
|
99 | (1) |
|
Derivation of the formulae for calls, puts and simple digitals |
|
|
100 | (11) |
|
|
104 | (3) |
|
|
107 | (2) |
|
Formula for a binary call |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
112 | (3) |
|
|
115 | (1) |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
119 | (3) |
|
A classification of hedging types |
|
|
122 | (2) |
|
|
122 | (1) |
|
The two main classifications |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (3) |
|
Simple Generalizations of the Black--Scholes World |
|
|
127 | (10) |
|
|
127 | (1) |
|
Dividends, foreign interest and cost of carry |
|
|
127 | (1) |
|
|
128 | (1) |
|
Dividend payments and no arbitrage |
|
|
128 | (1) |
|
The behavior of an option value across a dividend date |
|
|
129 | (2) |
|
Time-dependent parameters |
|
|
131 | (2) |
|
Formulae for power options |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (3) |
|
Early Exercise and American Options |
|
|
137 | (18) |
|
|
137 | (1) |
|
The perpetual American put |
|
|
137 | (4) |
|
Perpetual American call with dividends |
|
|
141 | (1) |
|
Mathematical formulation for general payoff |
|
|
142 | (2) |
|
Local solution for call with constant dividend yield |
|
|
144 | (2) |
|
Other dividend structures |
|
|
146 | (1) |
|
|
147 | (2) |
|
Other features in American-style contracts |
|
|
149 | (2) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (3) |
|
Probability Density Functions and First Exit Times |
|
|
155 | (12) |
|
|
155 | (1) |
|
The transition probability density function |
|
|
155 | (1) |
|
A trinomial model for the random walk |
|
|
156 | (1) |
|
|
157 | (3) |
|
The steady-state distribution |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
Cumulative distribution functions for first exit times |
|
|
161 | (1) |
|
Expected first exit times |
|
|
162 | (1) |
|
Another example of optimal stopping |
|
|
163 | (1) |
|
Expectations and Black--Scholes |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (12) |
|
|
167 | (1) |
|
Multi-dimensional lognormal random walks |
|
|
167 | (1) |
|
|
168 | (2) |
|
Options on many underlyings |
|
|
170 | (1) |
|
The pricing formula for European non-path-dependent options on dividend-paying assets |
|
|
171 | (1) |
|
Exchanging one asset for another: a similarity solution |
|
|
171 | (1) |
|
|
172 | (2) |
|
|
174 | (2) |
|
|
176 | (1) |
|
Realities of pricing basket options |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
Realities of hedging basket options |
|
|
178 | (1) |
|
Correlation versus cointegration |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (14) |
|
|
179 | (1) |
|
Equities can go down as well as up |
|
|
180 | (1) |
|
|
181 | (1) |
|
The asset price distribution |
|
|
182 | (1) |
|
An equation for the value of an option |
|
|
183 | (1) |
|
Valuing back down the tree |
|
|
184 | (3) |
|
|
187 | (2) |
|
|
189 | (1) |
|
The continuous-time limit |
|
|
190 | (1) |
|
No arbitrage in the binomial, Black-Scholes and `other' worlds |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (14) |
|
|
193 | (1) |
|
|
193 | (9) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (2) |
|
|
202 | (2) |
|
Elliott waves and Fibonacci numbers |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
204 | (1) |
|
Market microstructure modeling |
|
|
204 | (1) |
|
Effect of demand on price |
|
|
205 | (1) |
|
Combining market microstructure and option theory |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (6) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
How to fill in your trading sheet |
|
|
208 | (5) |
|
|
208 | (1) |
|
|
209 | (4) |
PART TWO PATH DEPENDENCY |
|
|
An Introduction to Exotic and Path-Dependent Options |
|
|
213 | (16) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
219 | (4) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
229 | (24) |
|
|
229 | (1) |
|
Different types of barrier option |
|
|
230 | (1) |
|
Pricing barriers in the partial differential equation framework |
|
|
231 | (5) |
|
|
231 | (1) |
|
|
232 | (1) |
|
Some formulae when volatility is constant |
|
|
232 | (4) |
|
|
236 | (1) |
|
Other features of barrier-style options |
|
|
236 | (7) |
|
|
240 | (1) |
|
|
240 | (1) |
|
Repeated hitting of the barrier |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
Market practice: What volatility should I use? |
|
|
244 | (2) |
|
|
246 | (4) |
|
|
249 | (1) |
|
|
250 | (3) |
|
Strongly Path-dependent Options |
|
|
253 | (10) |
|
|
253 | (1) |
|
Path-dependent quantities represented by an integral |
|
|
254 | (1) |
|
|
254 | (1) |
|
Continuous sampling: The pricing equation |
|
|
255 | (1) |
|
|
256 | (1) |
|
Path-dependent quantities represented by an updating rule |
|
|
256 | (1) |
|
|
256 | (1) |
|
Discrete sampling: The pricing equation |
|
|
257 | (3) |
|
|
258 | (1) |
|
The algorithm for discrete sampling |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
261 | (2) |
|
|
263 | (14) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
Extending the Black--Scholes equation |
|
|
265 | (6) |
|
Continuously-sampled averages |
|
|
265 | (1) |
|
Discretely-sampled averages |
|
|
266 | (4) |
|
Exponentially-weighted and other averages |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
Asian options in higher dimensions |
|
|
271 | (1) |
|
|
272 | (2) |
|
Put-call parity for the European average strike |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (2) |
|
|
277 | (8) |
|
|
277 | (1) |
|
|
277 | (1) |
|
Continuous measurement of the maximum |
|
|
277 | (3) |
|
Discrete measurement of the maximum |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (2) |
|
|
283 | (2) |
|
Derivatives and Stochastic Control |
|
|
285 | (8) |
|
|
285 | (1) |
|
Perfect trader and passport options |
|
|
285 | (3) |
|
|
287 | (1) |
|
Limiting the number of trades |
|
|
288 | (1) |
|
Limiting the time between trades |
|
|
289 | (1) |
|
Non-optimal trading and the benefits to the writer |
|
|
290 | (1) |
|
|
291 | (2) |
|
|
293 | (16) |
|
|
293 | (1) |
|
|
293 | (2) |
|
|
295 | (1) |
|
Capped lookbacks and Asians |
|
|
296 | (1) |
|
Combining path-dependent quantities: the lookback-Asian etc. |
|
|
296 | (3) |
|
The maximum of the asset and the average of the asset |
|
|
297 | (1) |
|
The average of the asset and the maximum of the average |
|
|
298 | (1) |
|
The maximum of the asset and the average of the maximum |
|
|
298 | (1) |
|
|
299 | (2) |
|
The continuous-time limit |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (4) |
|
|
304 | (1) |
|
|
305 | (4) |
PART THREE EXTENDING BLACK--SCHOLES |
|
309 | (214) |
|
Defects in the Black--Scholes Model |
|
|
311 | (8) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
Volatility smiles and surfaces |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
Empirical analysis of volatility |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
315 | (1) |
|
The feedback effect of hedging in illiquid markets |
|
|
315 | (1) |
|
|
316 | (1) |
|
More about American options and related matters |
|
|
316 | (1) |
|
Stochastic volatility and mean-variance analysis |
|
|
316 | (1) |
|
Advanced dividend modeling |
|
|
317 | (1) |
|
|
317 | (2) |
|
|
319 | (12) |
|
|
319 | (1) |
|
A model for a discretely-hedged position |
|
|
319 | (2) |
|
|
321 | (5) |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
The adjusted Δ and option value |
|
|
325 | (1) |
|
The real distribution of returns and the hedging error |
|
|
326 | (2) |
|
|
328 | (1) |
|
|
329 | (2) |
|
|
331 | (26) |
|
|
331 | (1) |
|
|
331 | (1) |
|
The model of Leland (1985) |
|
|
332 | (1) |
|
The model of Hoggard, Whalley & Wilmott (1992) |
|
|
333 | (4) |
|
|
337 | (1) |
|
The marginal effect of transaction costs |
|
|
337 | (3) |
|
|
340 | (1) |
|
Hedging to a bandwidth: the model of Whalley & Wilmott (1993) and Henrotte (1993) |
|
|
340 | (1) |
|
|
341 | (3) |
|
The model of Hodges & Neuberger (1989) |
|
|
341 | (1) |
|
The model of Davis, Panas & Zariphopoulou (1993) |
|
|
342 | (1) |
|
The asymptotic analysis of Whalley & Wilmott (1993) |
|
|
342 | (1) |
|
|
343 | (1) |
|
Interpretation of the models |
|
|
344 | (2) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (6) |
|
Black--Scholes and Leland hedging |
|
|
348 | (1) |
|
Market movement or delta-tolerance strategy |
|
|
349 | (1) |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (4) |
|
Volatility Smiles and Surfaces |
|
|
357 | (16) |
|
|
357 | (1) |
|
|
357 | (2) |
|
Time-dependent volatility |
|
|
359 | (2) |
|
Volatility smiles and skews |
|
|
361 | (1) |
|
|
362 | (1) |
|
Backing out the local volatility surface from European call option prices |
|
|
362 | (4) |
|
A simple volatility surface parameterization |
|
|
366 | (1) |
|
|
367 | (1) |
|
Volatility information contained in an at-the-money straddle |
|
|
367 | (1) |
|
Volatility information contained in a risk-reversal |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
369 | (1) |
|
How do I use the local volatility surface? |
|
|
370 | (1) |
|
|
370 | (3) |
|
|
373 | (10) |
|
|
373 | (1) |
|
|
373 | (1) |
|
A stochastic differential equation for volatility |
|
|
373 | (1) |
|
|
374 | (2) |
|
The market price of volatility risk |
|
|
376 | (1) |
|
Aside: The market price of risk for traded assets |
|
|
377 | (1) |
|
|
377 | (2) |
|
|
379 | (1) |
|
|
379 | (1) |
|
Stochastic implied volatility: the model of Schonbucher |
|
|
379 | (2) |
|
|
381 | (2) |
|
|
383 | (12) |
|
|
383 | (2) |
|
|
385 | (6) |
|
Uncertain volatility: The model of Avellaneda, Levy & Paras and Lyons (1995) |
|
|
385 | (2) |
|
Example: An up-and-out call |
|
|
387 | (2) |
|
|
389 | (1) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (3) |
|
Empirical Analysis of Volatility |
|
|
395 | (8) |
|
|
395 | (1) |
|
Stochastic volatility and uncertain parameters revisited |
|
|
395 | (1) |
|
Deriving an empirical stochastic volatility model |
|
|
396 | (1) |
|
Estimating the volatility of volatility |
|
|
397 | (1) |
|
Estimating the drift of volatility |
|
|
398 | (1) |
|
|
399 | (1) |
|
Option pricing with stochastic volatility |
|
|
399 | (1) |
|
The time evolution of stochastic volatility |
|
|
399 | (1) |
|
Stochastic volatility, certainty bands and confidence limits |
|
|
400 | (1) |
|
|
400 | (3) |
|
|
403 | (12) |
|
|
403 | (1) |
|
|
403 | (3) |
|
|
406 | (2) |
|
Hedging when there are jumps |
|
|
408 | (1) |
|
|
408 | (1) |
|
|
409 | (1) |
|
Hedging the jumps and risk neutrality |
|
|
410 | (1) |
|
The downside of jump-diffusion models |
|
|
411 | (1) |
|
|
411 | (1) |
|
Jump volatility with deterministic decay |
|
|
412 | (1) |
|
|
413 | (2) |
|
|
415 | (14) |
|
|
415 | (1) |
|
|
415 | (1) |
|
A simple example: the hedged call |
|
|
416 | (1) |
|
A mathematical model for a crash |
|
|
417 | (4) |
|
Case I: Black--Scholes hedging |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
421 | (1) |
|
Optimal static hedging: VaR reduction |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
423 | (1) |
|
|
424 | (1) |
|
Limiting the total number of crashes |
|
|
424 | (1) |
|
Limiting the frequency of crashes |
|
|
424 | (1) |
|
Crashes in a multi-asset world |
|
|
425 | (1) |
|
Fixed and floating exchange rates |
|
|
425 | (1) |
|
|
426 | (3) |
|
|
429 | (16) |
|
|
429 | (1) |
|
A simple model for the value of an option to a speculator |
|
|
430 | (3) |
|
The present value of expected payoff |
|
|
430 | (1) |
|
|
431 | (2) |
|
More sophisticated models for the return on an asset |
|
|
433 | (5) |
|
|
435 | (1) |
|
|
435 | (3) |
|
|
438 | (3) |
|
To hedge or not to hedge? |
|
|
441 | (2) |
|
|
443 | (1) |
|
|
443 | (2) |
|
|
445 | (16) |
|
|
445 | (1) |
|
Static replicating portfolio |
|
|
445 | (1) |
|
Matching a `target' contract |
|
|
446 | (1) |
|
Static hedging: nonlinear governing equation |
|
|
447 | (1) |
|
|
448 | (1) |
|
Pricing with a nonlinear equation |
|
|
448 | (1) |
|
|
449 | (2) |
|
|
451 | (2) |
|
Hedging path-dependent options with vanilla options |
|
|
453 | (2) |
|
|
453 | (1) |
|
Pricing and optimally hedging a portfolio of barrier options |
|
|
454 | (1) |
|
The mathematics of optimization |
|
|
455 | (5) |
|
|
455 | (4) |
|
|
459 | (1) |
|
Optimal portfolios for speculators |
|
|
460 | (1) |
|
|
460 | (1) |
|
The Feedback Effect of Hedging in Illiquid Markets |
|
|
461 | (16) |
|
|
461 | (1) |
|
The trading strategy for option replication |
|
|
462 | (1) |
|
The excess demand function |
|
|
463 | (1) |
|
Incorporating the trading strategy |
|
|
463 | (2) |
|
The influence of replication |
|
|
465 | (3) |
|
|
468 | (2) |
|
|
468 | (2) |
|
|
470 | (4) |
|
Time-independent trading strategy |
|
|
471 | (2) |
|
|
473 | (1) |
|
|
474 | (3) |
|
|
477 | (8) |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
478 | (1) |
|
|
479 | (1) |
|
Special utility functions |
|
|
479 | (1) |
|
Certainty equivalent wealth |
|
|
480 | (2) |
|
Maximization of expected utility |
|
|
482 | (1) |
|
Ordinal and cardinal utility |
|
|
482 | (1) |
|
|
483 | (2) |
|
More About American Options and Related Matters |
|
|
485 | (20) |
|
|
485 | (1) |
|
What Derivatives Week published |
|
|
486 | (1) |
|
|
487 | (1) |
|
|
487 | (1) |
|
And finally, the paper... |
|
|
488 | (1) |
|
|
488 | (2) |
|
Preliminary: pricing and hedging |
|
|
490 | (1) |
|
Utility maximizing exercise time |
|
|
491 | (4) |
|
Constant Absolute Risk Aversion |
|
|
493 | (1) |
|
Hyperbolic Absolute Risk Aversion |
|
|
494 | (1) |
|
|
495 | (1) |
|
Profit from selling American options |
|
|
495 | (3) |
|
|
498 | (1) |
|
|
499 | (1) |
|
Another situation where the same idea applies: passport options |
|
|
499 | (4) |
|
|
499 | (1) |
|
Utility maximization in the passport option |
|
|
500 | (3) |
|
|
503 | (2) |
|
Stochastic Volatility and Mean-variance Analysis |
|
|
505 | (8) |
|
|
505 | (1) |
|
The model for the asset and its volatility |
|
|
506 | (1) |
|
|
506 | (1) |
|
|
506 | (1) |
|
Choosing Δ to minimize the variance |
|
|
507 | (1) |
|
The mean and variance equations |
|
|
507 | (1) |
|
How to interpret and use the mean and variance |
|
|
508 | (1) |
|
Static hedging and portfolio optimization |
|
|
508 | (1) |
|
Example: Valuing and hedging an up-and-out call |
|
|
509 | (4) |
|
|
511 | (2) |
|
|
513 | (1) |
|
Advanced Dividend Modeling |
|
|
513 | (10) |
|
|
513 | (1) |
|
Why do we need dividend models? |
|
|
513 | (2) |
|
Effects of dividends on asset prices |
|
|
515 | (2) |
|
|
516 | (1) |
|
Term structure of dividends |
|
|
516 | (1) |
|
|
517 | (1) |
|
|
518 | (1) |
|
Uncertainty in dividend amount and timing |
|
|
518 | (2) |
|
|
520 | (3) |
PART FOUR INTEREST RATES AND PRODUCTS |
|
523 | (186) |
|
Fixed-Income Products and Analysis: Yield, Duration and Convexity |
|
|
525 | (20) |
|
|
525 | (1) |
|
Simple fixed-income contracts and features |
|
|
525 | (3) |
|
|
525 | (1) |
|
|
526 | (1) |
|
|
526 | (1) |
|
|
526 | (1) |
|
|
526 | (1) |
|
|
527 | (1) |
|
|
528 | (1) |
|
|
528 | (1) |
|
|
528 | (1) |
|
International bond markets |
|
|
528 | (1) |
|
|
528 | (1) |
|
|
529 | (1) |
|
|
529 | (1) |
|
|
529 | (1) |
|
|
529 | (1) |
|
Continuously- and discretely-compounded interest |
|
|
529 | (1) |
|
|
530 | (2) |
|
|
520 | (11) |
|
The Yield to Maturity (YTM) or Internal Rate of Return (IRR) |
|
|
531 | (1) |
|
|
532 | (1) |
|
|
533 | (1) |
|
|
533 | (2) |
|
|
535 | (1) |
|
|
536 | (1) |
|
|
536 | (2) |
|
Time-dependent interest rate |
|
|
538 | (2) |
|
|
540 | (1) |
|
Forward-rates and bootstrapping |
|
|
541 | (2) |
|
|
543 | (1) |
|
|
544 | (1) |
|
|
545 | (10) |
|
|
545 | (1) |
|
The vanilla interest rate swap |
|
|
545 | (2) |
|
|
547 | (1) |
|
|
548 | (1) |
|
Relationship between swaps and bonds |
|
|
548 | (3) |
|
|
551 | (1) |
|
Other features of swaps contracts |
|
|
551 | (1) |
|
|
552 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
|
553 | (1) |
|
|
553 | (2) |
|
One-factor Interest Rate Modeling |
|
|
555 | (14) |
|
|
555 | (1) |
|
Stochastic interest rates |
|
|
555 | (1) |
|
The bond pricing equation for the general model |
|
|
556 | (2) |
|
What is the market price of risk? |
|
|
558 | (11) |
|
Interpreting the market price of risk, and risk neutrality |
|
|
569 | (1) |
|
Tractable models and solutions of the bond pricing equation |
|
|
569 | |
|
Solution for constant parameters |
|
|
561 | (2) |
|
|
563 | (4) |
|
|
563 | (2) |
|
|
565 | (1) |
|
|
566 | (1) |
|
|
567 | (1) |
|
|
567 | (2) |
|
|
569 | (8) |
|
|
569 | (1) |
|
|
569 | (1) |
|
The extended Vasicek model of Hull & White |
|
|
570 | (1) |
|
Yield-curve fitting: for and against |
|
|
571 | (4) |
|
|
571 | (1) |
|
|
572 | (3) |
|
|
575 | (1) |
|
|
575 | (2) |
|
Interest Rate Derivatives |
|
|
577 | (20) |
|
|
577 | (1) |
|
|
577 | (1) |
|
|
578 | (3) |
|
|
578 | (3) |
|
|
581 | (3) |
|
|
583 | (1) |
|
The relationship between a caplet and a bond option |
|
|
583 | (1) |
|
|
583 | (1) |
|
|
584 | (1) |
|
Step-up swaps, caps and floors |
|
|
584 | (1) |
|
|
584 | (1) |
|
Swaptions, captions and floortions |
|
|
584 | (2) |
|
|
584 | (2) |
|
|
586 | (1) |
|
Index amortizing rate swaps |
|
|
586 | (4) |
|
|
588 | (1) |
|
Other features in the index amortizing rate swap |
|
|
589 | (1) |
|
Contracts with embedded decisions |
|
|
590 | (1) |
|
When the interest rate is not the spot rate |
|
|
591 | (1) |
|
The relationship between the spot interest rate and other rates |
|
|
592 | (1) |
|
|
592 | (1) |
|
|
593 | (2) |
|
|
595 | (2) |
|
|
597 | (14) |
|
|
597 | (1) |
|
|
597 | (1) |
|
|
598 | (2) |
|
|
600 | (1) |
|
Pricing CBs with known interest rate |
|
|
600 | (3) |
|
|
601 | (2) |
|
Two-factor modeling: convertible bonds with stochastic interest rate |
|
|
603 | (4) |
|
|
607 | (1) |
|
Path dependence in convertible bonds |
|
|
608 | (1) |
|
|
609 | (1) |
|
|
609 | (1) |
|
|
610 | (1) |
|
Mortgage-backed Securities |
|
|
611 | (10) |
|
|
611 | (1) |
|
|
612 | (1) |
|
Monthly payments in the fixed rate mortgage |
|
|
612 | (1) |
|
|
612 | (1) |
|
Mortgage-backed securities |
|
|
613 | (1) |
|
|
613 | (1) |
|
|
613 | (4) |
|
The statistics of repayment |
|
|
614 | (1) |
|
|
615 | (1) |
|
|
616 | (1) |
|
|
617 | (2) |
|
|
619 | (2) |
|
Multi-factor Interest Rate Modeling |
|
|
621 | (12) |
|
|
621 | (1) |
|
Theoretical framework for two factors |
|
|
621 | (3) |
|
Special case: modeling a long-term rate |
|
|
623 | (1) |
|
Special case: modeling the spread between the long and the short rate |
|
|
624 | (1) |
|
|
624 | (2) |
|
The phase plane in the absence of randomness |
|
|
626 | (3) |
|
|
629 | (1) |
|
General multi-factor theory |
|
|
630 | (2) |
|
|
630 | (2) |
|
|
632 | (1) |
|
Empirical Behavior of the Spot Interest Rate |
|
|
633 | (12) |
|
|
633 | (1) |
|
Popular one-factor spot-rate models |
|
|
634 | (1) |
|
Implied modeling: one factor |
|
|
635 | (1) |
|
|
636 | (1) |
|
|
637 | (2) |
|
The slope of the yield curve and the market price of risk |
|
|
639 | (1) |
|
What the slope of the yield curve tells us |
|
|
640 | (1) |
|
Properties of the forward-rate curve `on average' |
|
|
641 | (2) |
|
Implied modeling: two factor |
|
|
643 | (1) |
|
|
644 | (1) |
|
|
645 | (14) |
|
|
645 | (1) |
|
The forward-rate equation |
|
|
645 | (1) |
|
|
646 | (1) |
|
The non-Markov nature of HJM |
|
|
647 | (1) |
|
|
647 | (1) |
|
|
648 | (1) |
|
The relationship between the risk-neutral forward; rate drift and volatility |
|
|
648 | (1) |
|
|
649 | (1) |
|
|
649 | (1) |
|
|
650 | (1) |
|
The Musiela parameterization |
|
|
650 | (1) |
|
|
650 | (1) |
|
A simple one-factor example: Ho & Lee |
|
|
651 | (1) |
|
Principal component analysis |
|
|
652 | (2) |
|
|
654 | (1) |
|
|
654 | (1) |
|
Non-infinitesimal short rate |
|
|
655 | (1) |
|
The Brace, Gatarek and Musiela model |
|
|
655 | (2) |
|
|
657 | (2) |
|
Interest-rate Modeling Without Probabilities |
|
|
659 | (20) |
|
|
659 | (1) |
|
What do I want from an interest rate model? |
|
|
660 | (1) |
|
A non-probabilistic model for the behavior of the short-term interest rate |
|
|
660 | (1) |
|
Worst-case scenarios and a nonlinear equation |
|
|
661 | (2) |
|
Let's see that again in slow motion |
|
|
662 | (1) |
|
Examples of hedging: spreads for prices |
|
|
663 | (6) |
|
Hedging with one instrument |
|
|
665 | (1) |
|
Hedging with multiple instruments |
|
|
666 | (3) |
|
Generating the `Yield Envelope' |
|
|
669 | (2) |
|
|
671 | (4) |
|
|
675 | (2) |
|
Applications of the model |
|
|
677 | (1) |
|
Identifying arbitrage opportunities |
|
|
677 | (1) |
|
Establishing prices for the market maker |
|
|
677 | (1) |
|
Static hedging to reduce interest rate risk |
|
|
677 | (1) |
|
Risk management: a measure of absolute loss |
|
|
678 | (1) |
|
A remark on the validity of the model |
|
|
678 | (1) |
|
|
678 | (1) |
|
Pricing and Optimal Hedging of Derivatives, the Non-Probabilistic Model Cont'd |
|
|
679 | (18) |
|
|
679 | (1) |
|
|
679 | (4) |
|
|
683 | (5) |
|
Pricing the European option on a zero-coupon bond |
|
|
683 | (2) |
|
Pricing and hedging American options |
|
|
685 | (3) |
|
Contracts with embedded decisions |
|
|
688 | (2) |
|
The index amortizing rate swap |
|
|
690 | (3) |
|
|
693 | (2) |
|
|
695 | (2) |
|
Extensions to the Non-probabilistic Interest-rate Model |
|
|
697 | (12) |
|
|
697 | (1) |
|
|
697 | (1) |
|
|
698 | (1) |
|
|
699 | (2) |
|
Estimating s from past data |
|
|
700 | (1) |
|
|
701 | (4) |
|
A maximum number of crashes |
|
|
702 | (2) |
|
A maximum frequency of crashes |
|
|
704 | (1) |
|
Estimating e from past data |
|
|
705 | (1) |
|
|
705 | (2) |
|
|
707 | (2) |
PART FIVE RISK MEASUREMENT AND MANAGEMENT |
|
709 | (108) |
|
|
711 | (16) |
|
|
711 | (1) |
|
|
712 | (1) |
|
|
713 | (2) |
|
|
714 | (1) |
|
|
715 | (2) |
|
Including a risk-free investment |
|
|
716 | (1) |
|
Where do I want to be on the efficient frontier? |
|
|
717 | (3) |
|
|
720 | (1) |
|
Capital asset pricing model |
|
|
720 | (2) |
|
|
720 | (2) |
|
Choosing the optimal portfolio |
|
|
722 | (1) |
|
|
722 | (1) |
|
|
722 | (2) |
|
|
724 | (1) |
|
|
725 | (2) |
|
Asset Allocation in Continuous Time |
|
|
727 | (10) |
|
|
727 | (1) |
|
One risk-free and one risky asset |
|
|
727 | (5) |
|
|
727 | (1) |
|
Maximizing expected utility |
|
|
728 | (1) |
|
Stochastic control and the Bellman equation |
|
|
729 | (1) |
|
Constant Relative Risk Aversion |
|
|
730 | (1) |
|
Constant Absolute Risk Aversion |
|
|
731 | (1) |
|
|
732 | (1) |
|
Maximizing long-term growth |
|
|
733 | (1) |
|
A brief look at transaction costs |
|
|
734 | (2) |
|
|
736 | (1) |
|
|
737 | (10) |
|
|
737 | (1) |
|
Definition of value at risk |
|
|
737 | (1) |
|
|
738 | (2) |
|
|
740 | (1) |
|
|
740 | (3) |
|
|
741 | (1) |
|
The delta-gamma approximation |
|
|
741 | (2) |
|
|
743 | (1) |
|
|
743 | (1) |
|
|
743 | (1) |
|
|
743 | (1) |
|
|
744 | (1) |
|
Use of VaR as a performance measure |
|
|
744 | (2) |
|
|
746 | (1) |
|
Value of the Firm and the Risk of Default |
|
|
747 | (8) |
|
|
747 | (1) |
|
The value of the firm as a random variable |
|
|
747 | (3) |
|
|
748 | (1) |
|
Stochastic interest rates |
|
|
749 | (1) |
|
Modeling with measurable parameters and variables |
|
|
750 | (1) |
|
Calculating the value of the firm |
|
|
751 | (2) |
|
|
753 | (2) |
|
|
755 | (24) |
|
|
755 | (1) |
|
|
755 | (1) |
|
Modeling the risk of default |
|
|
756 | (1) |
|
The Poisson process and the instantaneous risk of default |
|
|
757 | (2) |
|
|
759 | (1) |
|
Time-dependent intensity and the term structure of default |
|
|
759 | (2) |
|
Stochastic risk of default |
|
|
761 | (2) |
|
|
763 | (1) |
|
Special cases and yield curve fitting |
|
|
763 | (1) |
|
A case study: The Argentine Par bond |
|
|
764 | (2) |
|
|
766 | (1) |
|
|
767 | (2) |
|
A model for change of credit rating |
|
|
769 | (3) |
|
|
770 | (2) |
|
|
772 | (1) |
|
|
772 | (1) |
|
|
772 | (1) |
|
Stochastic interest rates |
|
|
773 | (1) |
|
|
773 | (2) |
|
Bankruptcy when stock reaches a critical level |
|
|
773 | (1) |
|
Incorporating the instantaneous risk of default |
|
|
773 | (2) |
|
|
775 | (1) |
|
|
776 | (3) |
|
|
779 | (10) |
|
|
779 | (1) |
|
Derivatives triggered by default |
|
|
779 | (2) |
|
|
779 | (1) |
|
|
780 | (1) |
|
|
780 | (1) |
|
|
780 | (1) |
|
Derivatives of the yield spread |
|
|
781 | (1) |
|
|
781 | (1) |
|
|
781 | (1) |
|
Payment on change of rating |
|
|
781 | (1) |
|
Pricing credit derivatives |
|
|
782 | (4) |
|
|
783 | (1) |
|
Payoff on change of rating |
|
|
784 | (2) |
|
|
786 | (1) |
|
|
786 | (3) |
|
RiskMetrics and CreditMetrics |
|
|
789 | (8) |
|
|
789 | (1) |
|
|
790 | (1) |
|
Calculating the parameters the RiskMetrics way |
|
|
790 | (3) |
|
|
790 | (1) |
|
|
791 | (2) |
|
The CreditMetrics dataset |
|
|
793 | (1) |
|
|
793 | (1) |
|
|
793 | (1) |
|
|
794 | (1) |
|
|
794 | (1) |
|
The CreditMetrics methodology |
|
|
794 | (1) |
|
A portfolio of risky bonds |
|
|
795 | (1) |
|
CreditMetrics model outputs |
|
|
796 | (1) |
|
|
796 | (1) |
|
|
797 | (20) |
|
|
797 | (1) |
|
|
797 | (1) |
|
|
798 | (1) |
|
|
799 | (1) |
|
CrashMetrics for one stock |
|
|
799 | (3) |
|
Portfolio optimization and the Platinum Hedge |
|
|
801 | (1) |
|
The multi-asset/single-index model |
|
|
802 | (8) |
|
Portfolio optimization and the Platinum Hedge in the multi-asset model |
|
|
809 | (1) |
|
The marginal effect of an asset |
|
|
810 | (1) |
|
|
810 | (1) |
|
|
811 | (1) |
|
Margin calls and margin hedging |
|
|
811 | (2) |
|
|
812 | (1) |
|
|
812 | (1) |
|
|
813 | (1) |
|
|
813 | (1) |
|
Simple extensions to CrashMetrics |
|
|
814 | (1) |
|
The CrashMetrics Index (CMI) |
|
|
814 | (1) |
|
|
815 | (2) |
PART SIX MISCELLANEOUS TOPICS |
|
817 | (51) |
|
Derivatives **** Ups |
|
|
819 | (14) |
|
|
819 | (1) |
|
|
819 | (2) |
|
|
821 | (2) |
|
|
823 | (2) |
|
|
824 | (1) |
|
|
825 | (2) |
|
|
827 | (1) |
|
Long-Term Capital Management |
|
|
828 | (3) |
|
|
831 | (2) |
|
|
833 | (14) |
|
|
833 | (1) |
|
|
833 | (4) |
|
Bonus depending on the Sharpe ratio |
|
|
833 | (2) |
|
|
835 | (2) |
|
|
837 | (4) |
|
Putting skill into the equation |
|
|
841 | (2) |
|
|
842 | (1) |
|
|
843 | (4) |
|
|
847 | (8) |
|
|
847 | (1) |
|
Financial options and Real options |
|
|
847 | (1) |
|
An introductory example: Abandonment of a machine |
|
|
847 | (2) |
|
Optimal investment: simple example #2 |
|
|
849 | (1) |
|
Temporary suspension of the project, costless |
|
|
850 | (1) |
|
Temporary suspension of the project, costly |
|
|
850 | (1) |
|
Sequential and incremental investment |
|
|
851 | (1) |
|
|
852 | (3) |
|
|
855 | (13) |
|
|
855 | (1) |
|
|
855 | (1) |
|
What's so special about the energy markets? |
|
|
856 | (3) |
|
Why can't we apply Black--Scholes theory to energy derivatives? |
|
|
859 | (1) |
|
|
860 | (1) |
|
The Pilopovic two-factor model |
|
|
860 | (2) |
|
|
862 | (1) |
|
|
862 | (2) |
|
|
862 | (1) |
|
|
862 | (1) |
|
|
862 | (1) |
|
|
863 | (1) |
|
|
863 | (1) |
|
|
863 | (1) |
|
|
864 | (1) |
|
|
864 | (4) |
PART SEVEN NUMERICAL METHODS |
|
868 | (91) |
|
Finite-difference Methods for One-factor Models |
|
|
867 | (22) |
|
|
867 | (1) |
|
|
868 | (1) |
|
|
869 | (1) |
|
Differentiation using the grid |
|
|
870 | (1) |
|
|
871 | (1) |
|
|
872 | (2) |
|
|
874 | (1) |
|
|
874 | (1) |
|
Final conditions and payoffs |
|
|
875 | (1) |
|
|
875 | (3) |
|
The explicit finite-difference method |
|
|
878 | (7) |
|
The Black--Scholes equation |
|
|
881 | (1) |
|
Convergence of the explicit method |
|
|
881 | (4) |
|
|
885 | (2) |
|
|
887 | (2) |
|
Further Finite-Difference Methods for One-Factor Models |
|
|
889 | (24) |
|
|
889 | (1) |
|
Implicit finite-difference methods |
|
|
889 | (2) |
|
The Crank--Nicolson method |
|
|
891 | (10) |
|
Boundary condition type I: Vko+1 given |
|
|
893 | (1) |
|
Boundary condition type II: relationship between Vko+1 and Vko+1 |
|
|
893 | (1) |
|
Boundary condition type III: ∂2V/∂S2 = 0 |
|
|
894 | (1) |
|
|
895 | (1) |
|
|
895 | (3) |
|
Successive over-relaxation, SOR |
|
|
898 | (2) |
|
|
900 | (1) |
|
Comparison of finite-difference methods |
|
|
901 | (1) |
|
|
901 | (1) |
|
|
902 | (1) |
|
|
903 | (1) |
|
|
904 | (1) |
|
Free boundary problems and American options |
|
|
905 | (2) |
|
Early exercise and the explicit method |
|
|
906 | (1) |
|
Early exercise and Crank-Nicolson |
|
|
906 | (1) |
|
|
907 | (2) |
|
|
907 | (2) |
|
|
909 | (1) |
|
|
909 | (2) |
|
Discretely-sampled quantities |
|
|
910 | (1) |
|
Continuously-sampled quantities |
|
|
910 | (1) |
|
|
911 | (2) |
|
Finite-difference Methods for Two-factor Models |
|
|
913 | (10) |
|
|
913 | (1) |
|
|
913 | (2) |
|
|
915 | (3) |
|
Stability of the explicit method |
|
|
918 | (1) |
|
Alternating Direction Implicit |
|
|
918 | (2) |
|
|
920 | (1) |
|
|
921 | (2) |
|
Monte Carlo Simulation and Related Methods |
|
|
923 | (24) |
|
|
923 | (1) |
|
Relationship between derivative values and simulations: Equities, indices, currencies, commodities |
|
|
924 | (2) |
|
Advantages of Monte Carlo simulation |
|
|
926 | (1) |
|
|
927 | (1) |
|
Generating normal variables |
|
|
928 | (1) |
|
Real versus risk neutral, speculation versus hedging |
|
|
929 | (2) |
|
|
931 | (2) |
|
|
933 | (1) |
|
Higher dimensions: Cholesky factorization |
|
|
934 | (1) |
|
|
935 | (1) |
|
|
935 | (1) |
|
Control variate technique |
|
|
935 | (1) |
|
Pros and cons of Monte Carlo simulations |
|
|
936 | (1) |
|
|
937 | (1) |
|
|
937 | (1) |
|
|
938 | (1) |
|
Basic Monte Carlo integration |
|
|
938 | (2) |
|
Low-discrepancy sequences |
|
|
940 | (4) |
|
|
944 | (1) |
|
|
945 | (2) |
|
Finite-difference Programs |
|
|
947 | (12) |
|
|
947 | (1) |
|
Explicit one-factor model for a convertible bond |
|
|
947 | (1) |
|
|
948 | (1) |
|
|
949 | (2) |
|
Explicit stochastic volatility |
|
|
951 | (1) |
|
|
952 | (1) |
|
Explicit Epstein--Wilmott solution |
|
|
953 | (1) |
|
|
954 | (5) |
Appendix A All the Math You Need... and No More (An Executive Summary) |
|
959 | (8) |
|
|
959 | (1) |
|
|
959 | (1) |
|
|
960 | (1) |
|
A.4 Differentiation and Taylor series |
|
|
961 | (2) |
|
A.5 Expectation and variance |
|
|
963 | (2) |
|
A.6 Another look at Black-Scholes |
|
|
965 | (1) |
|
|
966 | (1) |
Epilog |
|
967 | (2) |
Bibliography |
|
969 | (16) |
Index |
|
985 | |