Preface |
|
vii | |
|
|
1 | (12) |
|
|
1 | (2) |
|
Types of Probability Problems |
|
|
3 | (1) |
|
|
4 | (3) |
|
Analysis versus Computer Simulation |
|
|
7 | (1) |
|
|
8 | (5) |
|
|
9 | (1) |
|
|
10 | (3) |
|
|
13 | (24) |
|
|
13 | (1) |
|
|
13 | (1) |
|
Why Use Computer Simulation? |
|
|
14 | (3) |
|
Computer Simulation of Random Phenomena |
|
|
17 | (1) |
|
Determining Characteristics of Random Variables |
|
|
18 | (6) |
|
Real-World Example -- Digital Communications |
|
|
24 | (7) |
|
|
26 | (1) |
|
|
26 | (5) |
|
Brief Introduction to MATLAB |
|
|
31 | (6) |
|
|
37 | (36) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (5) |
|
Assigning and Determining Probabilities |
|
|
43 | (5) |
|
Properties of the Probability Function |
|
|
48 | (4) |
|
Probabilities for Continuous Sample Spaces |
|
|
52 | (2) |
|
Probabilities for Finite Sample Spaces -- Equally Likely Outcomes |
|
|
54 | (1) |
|
|
55 | (7) |
|
|
62 | (2) |
|
Real-World Example -- Quality Control |
|
|
64 | (9) |
|
|
66 | (1) |
|
|
66 | (7) |
|
|
73 | (32) |
|
|
73 | (1) |
|
|
73 | (1) |
|
Joint Events and the Conditional Probability |
|
|
74 | (9) |
|
Statistically Independent Events |
|
|
83 | (3) |
|
|
86 | (3) |
|
|
89 | (8) |
|
Real-World Example -- Cluster Recognition |
|
|
97 | (8) |
|
|
100 | (1) |
|
|
100 | (5) |
|
Discrete Random Variables |
|
|
105 | (28) |
|
|
105 | (1) |
|
|
105 | (1) |
|
Definition of Discrete Random Variable |
|
|
106 | (2) |
|
Probability of Discrete Random Variables |
|
|
108 | (3) |
|
Important Probability Mass Functions |
|
|
111 | (2) |
|
Approximation of Binomial PMF by Poisson PMF |
|
|
113 | (2) |
|
Transformation of Discrete Random Variables |
|
|
115 | (2) |
|
Cumulative Distribution Function |
|
|
117 | (5) |
|
|
122 | (2) |
|
Real-World Example -- Servicing Customers |
|
|
124 | (9) |
|
|
128 | (1) |
|
|
128 | (5) |
|
Expected Values for Discrete Random Variables |
|
|
133 | (34) |
|
|
133 | (1) |
|
|
133 | (1) |
|
Determining Averages from the PMF |
|
|
134 | (3) |
|
Expected Values of Some Important Random Variables |
|
|
137 | (3) |
|
Expected Value for a Function of a Random Variable |
|
|
140 | (3) |
|
Variance and Moments of a Random Variable |
|
|
143 | (4) |
|
|
147 | (6) |
|
Estimating Means and Variances |
|
|
153 | (2) |
|
Real-World Example -- Data Compression |
|
|
155 | (8) |
|
|
157 | (1) |
|
|
158 | (5) |
|
Derivation of E[g(X)] Formula |
|
|
163 | (2) |
|
MATLAB Code Used to Estimate Mean and Variance |
|
|
165 | (2) |
|
Multiple Discrete Random Variables |
|
|
167 | (48) |
|
|
167 | (1) |
|
|
168 | (1) |
|
Jointly Distributed Random Variables |
|
|
169 | (5) |
|
|
174 | (4) |
|
Independence of Multiple Random Variables |
|
|
178 | (3) |
|
Transformations of Multiple Random Variables |
|
|
181 | (5) |
|
|
186 | (3) |
|
|
189 | (3) |
|
Prediction of a Random Variable Outcome |
|
|
192 | (6) |
|
Joint Characteristic Functions |
|
|
198 | (2) |
|
Computer Simulation of Random Vectors |
|
|
200 | (2) |
|
Real-World Example Assessing Health Risks |
|
|
202 | (11) |
|
|
204 | (1) |
|
|
204 | (9) |
|
Derivation of the Cauchy-Schwarz Inequality |
|
|
213 | (2) |
|
Conditional Probability Mass Functions |
|
|
215 | (32) |
|
|
215 | (1) |
|
|
216 | (1) |
|
Conditional Probability Mass Function |
|
|
217 | (3) |
|
Joint, Conditional, and Marginal PMFs |
|
|
220 | (5) |
|
Simplifying Probability Calculations using Conditioning |
|
|
225 | (4) |
|
Mean of the Conditional PMF |
|
|
229 | (6) |
|
Computer Simulation Based on Conditioning |
|
|
235 | (2) |
|
Real-World Example -- Modeling Human Learning |
|
|
237 | (10) |
|
|
240 | (1) |
|
|
240 | (7) |
|
Discrete N-Dimensional Random Variables |
|
|
247 | (38) |
|
|
247 | (1) |
|
|
247 | (1) |
|
Random Vectors and Probability Mass Functions |
|
|
248 | (3) |
|
|
251 | (4) |
|
|
255 | (10) |
|
Joint Moments and the Characteristic Function |
|
|
265 | (1) |
|
Conditional Probability Mass Functions |
|
|
266 | (3) |
|
Computer Simulation of Random Vectors |
|
|
269 | (3) |
|
Real-World Example -- Image Coding |
|
|
272 | (13) |
|
|
277 | (1) |
|
|
277 | (8) |
|
Continuous Random Variables |
|
|
285 | (58) |
|
|
285 | (1) |
|
|
286 | (1) |
|
Definition of a Continuous Random Variable |
|
|
287 | (6) |
|
The PDF and Its Properties |
|
|
293 | (2) |
|
|
295 | (8) |
|
Cumulative Distribution Functions |
|
|
303 | (8) |
|
|
311 | (6) |
|
|
317 | (7) |
|
|
324 | (4) |
|
Real-World Example -- Setting Clipping Levels |
|
|
328 | (11) |
|
|
331 | (1) |
|
|
331 | (8) |
|
Derivation of PDF of a Transformed Continuous Random Variable |
|
|
339 | (2) |
|
MATLAB Subprograms to Compute Q and Inverse Q Functions |
|
|
341 | (2) |
|
Expected Values for Continuous Random Variables |
|
|
343 | (34) |
|
|
343 | (1) |
|
|
343 | (1) |
|
Determining the Expected Value |
|
|
344 | (5) |
|
Expected Values for Important PDFs |
|
|
349 | (2) |
|
Expected Value for a Function of a Random Variable |
|
|
351 | (4) |
|
|
355 | (4) |
|
|
359 | (2) |
|
Probability, Moments, and the Chebyshev Inequality |
|
|
361 | (2) |
|
Estimating the Mean and Variance |
|
|
363 | (1) |
|
Real-World Example -- Critical Software Testing |
|
|
364 | (11) |
|
|
367 | (1) |
|
|
367 | (8) |
|
Partial Proof of Expected Value of Function of Continuous Random Variable |
|
|
375 | (2) |
|
Multiple Continuous Random Variables |
|
|
377 | (56) |
|
|
377 | (1) |
|
|
378 | (1) |
|
Jointly Distributed Random Variables |
|
|
379 | (8) |
|
Marginal PDFs and the Joint CDF |
|
|
387 | (5) |
|
Independence of Multiple Random Variables |
|
|
392 | (2) |
|
|
394 | (10) |
|
|
404 | (8) |
|
|
412 | (1) |
|
Prediction of Random Variable Outcome |
|
|
412 | (2) |
|
Joint Characteristic Functions |
|
|
414 | (1) |
|
|
415 | (4) |
|
Real-World Example - Optical Character Recognition |
|
|
419 | (14) |
|
|
423 | (1) |
|
|
423 | (10) |
|
Conditional Probability Density Functions |
|
|
433 | (24) |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (6) |
|
Joint, Conditional, and Marginal PDFs |
|
|
440 | (4) |
|
Simplifying Probability Calculations Using Conditioning |
|
|
444 | (2) |
|
|
446 | (1) |
|
Computer Simulation of Jointly Continuous Random Variables |
|
|
447 | (2) |
|
Real-World Example -- Retirement Planning |
|
|
449 | (8) |
|
|
452 | (1) |
|
|
452 | (5) |
|
Continuous N-Dimensional Random Variables |
|
|
457 | (28) |
|
|
457 | (1) |
|
|
457 | (1) |
|
|
458 | (5) |
|
|
463 | (2) |
|
|
465 | (2) |
|
Joint Moments and the Characteristic Function |
|
|
467 | (4) |
|
|
471 | (1) |
|
Prediction of a Random Variable Outcome |
|
|
471 | (4) |
|
Computer Simulation of Gaussian Random Vectors |
|
|
475 | (1) |
|
Real-World Example -- Signal Detection |
|
|
476 | (9) |
|
|
479 | (1) |
|
|
479 | (6) |
|
Probability and Moment Approximations Using Limit Theorems |
|
|
485 | (30) |
|
|
485 | (1) |
|
|
486 | (1) |
|
Convergence and Approximation of a Sum |
|
|
486 | (1) |
|
|
487 | (5) |
|
|
492 | (11) |
|
Real-World Example -- Opinion Polling |
|
|
503 | (8) |
|
|
506 | (1) |
|
|
507 | (4) |
|
MATLAB Program to Compute Repeated Convolution of PDFs |
|
|
511 | (2) |
|
Proof of Central Limit Theorem |
|
|
513 | (2) |
|
|
515 | (32) |
|
|
515 | (1) |
|
|
516 | (1) |
|
What Is a Random Process? |
|
|
517 | (3) |
|
Types of Random Processes |
|
|
520 | (3) |
|
The Important, Property of Stationarity |
|
|
523 | (5) |
|
|
528 | (5) |
|
|
533 | (5) |
|
Real-World Example - Statistical Data Analysis |
|
|
538 | (9) |
|
|
542 | (1) |
|
|
542 | (5) |
|
Wide Sense Stationary Random Processes |
|
|
547 | (50) |
|
|
547 | (1) |
|
|
548 | (1) |
|
Definition of WSS Random Process |
|
|
549 | (3) |
|
|
552 | (10) |
|
Ergodicity and Temporal Averages |
|
|
562 | (5) |
|
The Power Spectral Density |
|
|
567 | (9) |
|
Estimation of the ACS and PSD |
|
|
576 | (4) |
|
Continuous-Time WSS Random Processes |
|
|
580 | (6) |
|
Real-World Example - Random Vibration Testing |
|
|
586 | (11) |
|
|
589 | (1) |
|
|
590 | (7) |
|
Linear Systems and Wide Sense Stationary Random Processes |
|
|
597 | (44) |
|
|
597 | (1) |
|
|
598 | (1) |
|
Random Process at Output of Linear System |
|
|
598 | (9) |
|
Interpretation of the PSD |
|
|
607 | (2) |
|
|
609 | (14) |
|
Continuous-Time Definitions and Formulas |
|
|
623 | (3) |
|
Real-World Example -- Speech Synthesis |
|
|
626 | (11) |
|
|
630 | (1) |
|
|
631 | (6) |
|
Solution for Infinite Length Predictor |
|
|
637 | (4) |
|
Multiple Wide Sense Stationary Random Processes |
|
|
641 | (32) |
|
|
641 | (1) |
|
|
642 | (1) |
|
Jointly Distributed WSS Random Processes |
|
|
642 | (5) |
|
The Cross-Power Spectral Density |
|
|
647 | (5) |
|
Transformations of Multiple Random Processes |
|
|
652 | (5) |
|
Continuous-Time Definitions and Formulas |
|
|
657 | (4) |
|
Cross-Correlation Sequence Estimation |
|
|
661 | (2) |
|
Real-World Example -- Brain Physiology Research |
|
|
663 | (10) |
|
|
667 | (1) |
|
|
667 | (6) |
|
Gaussian Random Processes |
|
|
673 | (38) |
|
|
673 | (2) |
|
|
675 | (1) |
|
Definition of the Gaussian Random Process |
|
|
676 | (5) |
|
|
681 | (2) |
|
Nonlinear Transformations |
|
|
683 | (3) |
|
Continuous-Time Definitions and Formulas |
|
|
686 | (3) |
|
Special Continuous-Time Gaussian Random Processes |
|
|
689 | (7) |
|
|
696 | (2) |
|
Real-World Example -- Estimating Fish Populations |
|
|
698 | (11) |
|
|
701 | (1) |
|
|
702 | (7) |
|
MATLAB Listing for Figure 20.2 |
|
|
709 | (2) |
|
|
711 | (28) |
|
|
711 | (2) |
|
|
713 | (1) |
|
Derivation of Poisson Counting Random Process |
|
|
714 | (4) |
|
|
718 | (3) |
|
|
721 | (2) |
|
Compound Poisson Random Process |
|
|
723 | (4) |
|
|
727 | (1) |
|
Real-World Example -- Automobile Traffic Signal Planning |
|
|
728 | (9) |
|
|
732 | (1) |
|
|
732 | (5) |
|
Joint PDF for Interarrival Times |
|
|
737 | (2) |
|
|
739 | (38) |
|
|
739 | (5) |
|
|
744 | (1) |
|
|
744 | (4) |
|
Computation of State Probabilities |
|
|
748 | (8) |
|
|
756 | (3) |
|
Further Steady-State Characteristics |
|
|
759 | (3) |
|
|
762 | (2) |
|
|
764 | (1) |
|
Real-World Example -- Strange Markov Chain Dynamics |
|
|
765 | (10) |
|
|
767 | (1) |
|
|
767 | (8) |
|
Solving for the Stationary PMF |
|
|
775 | (2) |
|
A. Glossary of Symbols and Abbrevations |
|
|
777 | (6) |
|
B. Assorted Math Facts and Formulas |
|
|
783 | (6) |
|
|
783 | (1) |
|
|
784 | (1) |
|
|
784 | (1) |
|
|
785 | (1) |
|
|
786 | (3) |
|
C. Linear and Matrix Algebra |
|
|
789 | (6) |
|
|
789 | (2) |
|
|
791 | (1) |
|
C.3 Matrix Manipulation and Formulas |
|
|
792 | (1) |
|
C.4 Some Properties of PD (PSD) Matrices |
|
|
793 | (1) |
|
C.5 Eigendecomposition of Matrices |
|
|
793 | (2) |
|
D. Summary of Signals, Linear Transforms, and Linear Systems |
|
|
795 | (14) |
|
D.1 Discrete-Time Signals |
|
|
795 | (1) |
|
|
796 | (4) |
|
D.3 Discrete-Time Linear Systems |
|
|
800 | (4) |
|
D.4 Continuous-Time Signals |
|
|
804 | (1) |
|
|
805 | (2) |
|
D.6 Continuous-Time Linear Systems |
|
|
807 | (2) |
|
E. Answers to Selected Problems |
|
|
809 | (14) |
Index |
|
823 | |